第17章
在后来的时刻,最可能的状态是两个盒子都充满了相当均匀的氧分子和氮分子的混合物。这种状态比原先分开的两盒的初始状态更无序,即具有更大的熵。
和其他科学定律,譬如牛顿引力定律相比,热力学定律的状况相当不同,例如,它只是在绝大多数的而非所有情形下成立。在以后某一时刻,所有我们第一个盒子中的气体分子在盒子的一半被发现的概率只有几万亿分之一,但它们可能发生。但是,如果附近有一黑洞,看来存在一种非常容易的方法违反第二定律:只要将一些具有大量熵的物体,譬如一盒气体扔进黑洞里。黑洞外物体的总熵就会减少。当然,人们仍然可以说包括黑洞里的熵的总熵没有降低——但是由于没有办法看到黑洞里面,我们不能知道里面物体的熵为多少。如果黑洞具有某一特征,黑洞外的观察者因之可知道它的熵,并且只要携带熵的物体一落入黑洞,它就会增加,那将是很美妙的。紧接着上述的黑洞面积定理的发现(即只要物体落入黑洞,它的事件视界面积就会增加),普林斯顿一位名叫雅可布·柏肯斯坦的研究生提出,事件视界的面积即是黑洞熵的量度。由于携带熵的物质落到黑洞中去,它的事件视界的面积就会增加,这样黑洞外物质的熵和事件视界面积的和就永远不会降低。
看来在大多数情况下,这个建议不违背热力学第二定律,然而还有一个致命的瑕疵。如果一个黑洞具有熵,那它也应该有温度。但具有特定温度的物体必须以一定的速率发出辐射。从日常经验知道:只要将火钳在火上烧至红热就能发出辐射。但在低温下物体也发出辐射;通常情况下,只是因为其辐射相当小而没被注意到。为了不违反热力学第二定律这辐射是必须的。所以黑洞必须发出辐射。但正是按照其定义,黑洞被认为是不发出任何东西的物体,所以看来,不能认为黑洞的事件视界的面积是它的熵。1972年,我和布兰登·卡特以及美国同事詹姆·巴丁合写了一篇论文,在论文中我们指出,虽然在熵和事件视界的面积之间存在许多相似点,但还存在着这个致命的困难。我必须承认,写此文章的部份动机是因为被柏肯斯坦所激怒,我觉得他滥用了我的事件视界面积增加的发现。然而,最后发现,虽然是在一种他肯定没有预料到的情形下,但他基本上还是正确的。
1973年9月我访问莫斯科时,和苏联两位最主要的专家雅可夫·捷尔多维奇和亚历山大·斯塔拉宾斯基讨论黑洞问题。他们说服我,按照量子力学不确定性原理,旋转黑洞应产生并辐射粒子。在物理学的基础上,我相信他们的论点,但是不喜欢他们计算辐射所用的数学方法。所以我着手设计一种更好的数学处理方法,并于1973年11月底在牛津的一次非正式讨论会上将其公布于众。那时我还没计算出实际上辐射多少出来。我预料要去发现的正是捷尔多维奇和斯塔拉宾斯基所预言的从旋转黑洞发出的辐射。然而,当我做了计算,使我既惊奇又恼火的是,我发现甚至非旋转黑洞显然也以不变速率产生和发射粒子。起初我以为这种辐射表明我所用的一种近似无效。我担心如果柏肯斯坦发现了这个情况,他就一定会用它去进一步支持他关于黑洞熵的思想,而我仍然不喜欢这种思想。然而,我越仔细推敲,越觉得这近似其实应该有效。但是,最后使我信服这辐射是真实的理由是,这辐射的粒子谱刚好是一个热体辐射的谱,而且黑洞以刚好防止第二定律被违反的准确速率发射粒子。此后,其他人用多种不同的形式重复了这个计算,他们所有人都证实了黑洞必须如同一个热体那样发射粒子和辐射,其温度只依赖于黑洞的质量——质量越大则温度越低。
我们知道,任何东西都不能从黑洞的事件视界之内逃逸出来,何以黑洞会发射粒子呢?量子理论给我们的回答是,粒子不是从黑洞里面出来的,而是从紧靠黑洞的事件视界的外面的“空”的空间来的!我们可以用以下的方法去理解它:我们以为是“真空”的空间不能是完全空的,因为那就会意味着诸如引力场和电磁场的所有场都必须刚好是零。然而场的数值和它的时间变化率如同不确定性原理所表明的粒子位置和速度那样,对一个量知道得越准确,则对另一个量知道得越不准确。所以在空的空间里场不可能严格地被固定为零,因为那样它就既有准确的值(零)又有准确的变化率(也是零)。场的值必须有一定的最小的不准确量或量子起伏。人们可以将这些起伏理解为光或引力的粒子对,它们在某一时刻同时出现、互相离开、然后又互相靠近而且互相湮灭。这些粒子正如同携带太阳引力的虚粒子:它们不像真的粒子那样能用粒子加速器直接探测到。然而,可以测量出它们的间接效应。例如,测出绕着原子运动的电子能量发生的微小变化和理论预言是如此相一致,以至于达到了令人惊讶的地步。不确定性原理还预言了类似的虚的物质粒子对的存在,例如电子对和夸克对。然而在这种情形下,粒子对的一个成员为粒子而另一成员为反粒子(光和引力的反粒子正是其自身)。
因为能量不能无中生有,所以粒子反粒子对中的一个参与者有正的能量,而另一个有负的能量。由于在正常情况下实粒子总是具有正能量,所以具有负能量的那一个粒子注定是短命的虚粒子。它必须找到它的伴侣并与之相湮灭。然而,一颗接近大质量物体的实粒子比它远离此物体时能量更小,因为要花费能量抵抗物体的引力吸引才能将其推到远处。正常情况下,这粒子的能量仍然是正的。但是黑洞里的引力是如此之强,甚至在那儿一个实粒子的能量都会是负的。所以,如果存在黑洞,带有负能量的虚粒子落到黑洞里变成实粒子或实反粒子是可能的。这种情形下,它不再需要和它的伴侣相湮灭了,它被抛弃的伴侣也可以落到黑洞中去。啊,具有正能量的它也可以作为实粒子或实反粒子从黑洞的邻近逃走(图)。对于一个远处的观察者而言,这看起来就像粒子是从黑洞发射出来一样。黑洞越小,负能粒子在变成实粒子之前必须走的距离越短,这样黑洞发射率和表观温度也就越大。
图
辐射出去的正能量会被落入黑洞的负能粒子流所平衡。按照爱因斯坦方程e=mc2(e是能量,m是质量,c为光速),能量和质量成正比。所以往黑洞去的负能量流减少它的质量。当黑洞损失质量时,它的事件视界面积变小,但是它发射出的辐射的熵过量地补偿了黑洞的熵的减少,所以第二定律从未被违反过。
还有,黑洞的质量越小,则其温度越高。这样当黑洞损失质量时,它的温度和发射率增加,因而它的质量损失得更快。人们并不很清楚,当黑洞的质量最后变得极小时会发生什么。但最合理的猜想是,它最终将会在一个巨大的、相当于几百万颗氢弹爆炸的发射爆中消失殆尽。
一个具有几倍太阳质量的黑洞只具有1000万分之一度的绝对温度。这比充满宇宙的微波辐射的温度(大约)要低得多,所以这种黑洞的辐射比它吸收的还要少。如果宇宙注定继续永远膨胀下去,微波辐射的温度就会最终减小到比这黑洞的温度还低,它就开始损失质量。但是即使那时候,它的温度是如此之低,以至于要用100亿亿亿亿亿亿亿亿年(1后面跟66个0)才全部蒸发完。这比宇宙的年龄长得多了,宇宙的年龄大约只有100到200亿年(1或2后面跟10个0)。另一方面,正如第六章提及的,在宇宙的极早期阶段存在由于无规性引起的坍缩而形成的质量极小的太初黑洞。这样的小黑洞会有高得多的温度,并以大得多的速率发生辐射。具有10亿吨初始质量的太初黑洞的寿命大体和宇宙的年龄相同。初始质量比这小的太初黑洞应该已蒸发完毕,但那些比这稍大的黑洞仍在辐射出x射线以及伽玛射线。这些x射线和伽玛射线像是光波,只是波长短得多。这样的黑洞几乎不配这黑的绰号:它们实际上是白热的,正以大约1万兆瓦的功率发射能量。
只要我们能够驾驭黑洞的功率,一个这样的黑洞可以开动10个大型的发电站。然而,这是非常困难的:这黑洞的质量和一座山差不多,却被压缩成万亿之一英寸亦即比一个原子核的尺度还小!如果在地球表面上你有这样的一个黑洞,就无法阻止它透过地面落到地球的中心。它会穿过地球而来回振动,直到最后停在地球的中心。所以仅有的放置黑洞并利用之发出能量的地方是绕着地球转动的轨道,而仅有的将其放到这轨道上的办法是,用在它之前的一个大质量的吸引力去拖它,这和在驴子前面放一根胡罗卜相当像。至少在最近的将来,这个设想并不现实。
但是,即使我们不能驾驭这些太初黑洞的辐射,我们观测到它们的机遇又如何呢?我们可以去寻找在太初黑洞寿命的大部分时间里发出的伽玛射线辐射。虽然它们在很远以外的地方,从大部分黑洞来的辐射非常弱,但是从所有它们来的总的辐射是可以检测得到的。我们确实观察到了这样的一个伽玛射线背景:图表示观察到的强度随频率的变化。然而,这个背景可以是也可能是除了太初黑洞之外的过程产生的。图中点线指出,如果在每立方光年平均有300个太初黑洞,它们所发射的伽玛射线的强度应如何地随频率而变化。